Limits for Compact Representation of Plans
نویسندگان
چکیده
Most planning formalisms allow instances with shortest plans of exponential length. While such instances are problematic, they are usually unavoidable and can occur in practice. There are several known cases of restricted planning problems where plans can be exponential but always have a compact (ie. polynomial) representation, often using recursive macros. Such compact representations are important since exponential plans are difficult both to use and to understand. We show that these results do not extend to the general case, by proving a number of bounds for compact representations of plans under various criteria, like efficient sequential or random access of actions. Further, we show that it is unlikely to get around this by reformulating planning into some other problem. The results are discussed in the context of abstraction, macros and plan explanation.
منابع مشابه
The study of relation between existence of admissible vectors and amenability and compactness of a locally compact group
The existence of admissible vectors for a locally compact group is closely related to the group's profile. In the compact groups, according to Peter-weyl theorem, every irreducible representation has admissible vector. In this paper, the conditions under which the inverse of this case is being investigated has been investigated. Conditions such as views that are admissible and stable will get c...
متن کاملAlgorithms and Limits for Compact Plan Representations
Compact representations of objects is a common concept in computer science. Automated planning can be viewed as a case of this concept: a planning instance is a compact implicit representation of a graph and the problem is to find a path (a plan) in this graph. While the graphs themselves are represented compactly as planning instances, the paths are usually represented explicitly as sequences ...
متن کاملA Class of compact operators on homogeneous spaces
Let $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and $H$ be a compact subgroup of $G$. For an admissible wavelet $zeta$ for $varpi$ and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.
متن کاملLocalization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملمطالعه تابشهای طیف الکترومغناطیس در لامپهای فلورسنت فشرده متداول
Introduction: In recent years, use of compact fluorescent lamps has increased in order to optimize energy consumption. The aim of this study was to evaluate the radiations of electromagnetic spectrum from usual compact fluorescent lamps. Methods: In this study, 48 compact fluorescent lamps from different brands and cover (warm – cool) were selected. For studied lamps, operational facto...
متن کامل